Sains
Malaysiana 52(7)(2023):
2149-2162
http://doi.org/10.17576/jsm-2023-5207-20
On
Some New Exponential Ratio Estimator of Population Mean in Two Phase Sampling
(Beberapa
Penganggar Nisbah Eksponen Baharu bagi Min Populasi dalam Persampelan Dua Fasa)
YASIR HASSAN1,*,
MUHAMMAD FAROOQ2, SALEHA YASIR3 & WILL MURRAY4
1Lahore Business School, The University of Lahore, Pakistan
2Department of Statistics, COMSATS University Islamabad,
Lahore Campus, Lahore, Pakistan
3The University of Lahore, Pakistan
4Department of Mathematics and Statistics, California State
University, Long Beach, USA
Received:
14 November 2022/Accepted: 12 July 2023
Abstract
In this paper, we suggest employing the
exponential ratio estimator to estimate the mean of the study variable using a
two-phase sample strategy with two modified auxiliary variables. Several
researchers discussed the properties of the estimators they proposed and
discovered that the estimators in their studies were relatively efficient. The
estimators previously studied are listed chronologically in the appendix to
this paper. In two phase sampling, the estimator's mean square errors and
relative efficiencies are calculated using auxiliary variable information. To
assess the properties of our proposed estimator, we noticed that it has a lower
mean square error (MSE) than the classical ratio estimator and some other
exponential ratio estimators. The estimator is more useful than other
estimators in solving real-world issues, notably in engineering, environmental
science, management, and biological sciences. The proposed estimator has been
applied to real-world data sets such as BRICS, Son's Head Measurement, Number
of Hospital Beds, Sale Price of Residence, Ambient Pressure (AP), and Heating
Load. In survey research, our suggested estimator has also been demonstrated to
be more effective.
Keywords: Auxiliary variable;
exponential; mean square error; two phase
ABSTRAK
Dalam
makalah ini, kami mencadangkan penggunaan penganggar nisbah eksponen untuk
menganggar min pemboleh ubah kajian menggunakan strategi sampel dua fasa dengan
dua pemboleh ubah tambahan yang diubah suai. Beberapa penyelidik membincangkan
sifat penganggar yang mereka cadangkan dan mendapati bahawa penganggar dalam
kajian mereka adalah agak cekap. Penganggar yang dikaji sebelum ini
disenaraikan secara kronologi dalam lampiran kertas ini. Dalam persampelan dua
fasa, ralat purata kuasa dua penganggar dan kecekapan relatif dihitung
menggunakan maklumat pemboleh ubah tambahan. Untuk menilai sifat penganggar
yang dicadangkan ini, kami mendapati ia mempunyai ralat min kuasa dua (MSE)
yang lebih rendah daripada penganggar nisbah klasik dan beberapa penganggar
nisbah eksponen lain. Penganggar ini lebih baik daripada penganggar lain dalam
menyelesaikan isu dunia sebenar, terutamanya dalam kejuruteraan, sains alam
sekitar, pengurusan dan sains biologi. Penganggar yang dicadangkan telah
digunakan pada set data dunia sebenar seperti BRICS, Ukuran Kepala Anak,
Bilangan Katil Hospital, Harga Jualan Kediaman, Tekanan Ambien (AP) dan Beban
Pemanasan. Dalam kajian tinjauan, penganggar cadangan kami juga telah
ditunjukkan sebagai lebih berkesan.
Kata
kunci: Eksponen; pemboleh ubah bantu; purata kuasa dua; ralat dua fasa
REFERENCES
Akhlaq, T., Ismail, M. & Shahbaz, M.Q. 2019. On
efficient estimation of process variability. Symmetry 11(4):
554.
Al-Marshadi, A.H., Alharby, A.H.
& Shahbaz, M.Q. 2018. On some new estimators of population variance in
single and two-phase sampling. Maejo International
Journal of Science and Technology 12(3):
272-281.
Asghar, A., Sanaullah, A. &
Hanif, M. 2017. A multivariate regression-cum-exponential estimator for
population variance vector in two phase sampling. Journal of King Saud University-Science 30(2): 223-228.
Bahl, S. & Tuteja, R.K. 1991.
Ratio and product type exponential estimators. Journal of Information and Optimization Sciences 12(1): 159-164.
Bandyopadhyay, S. 1980. Improved
ratio and product estimators. Sankhya 42(1-2): 45-49.
Cekim, H.O. & Kadilar, C. 2020.
In-type estimators for the population variance in stratified random sampling. Communications in Statistics-Simulation and
Computation 49(7):
1665-1677.
Clement, E.P. & Inyang, E.J.
2020. A class of modified calibration ratio estimators of population mean with
known coefficient of kurtosis in stratified double sampling. Journal of Modern Mathematics and Statistics 14(4): 55-60.
Cochran, W.G. 1940. The estimation of
the yields of cereal experiments by sampling for the ratio of grain to total
produce. The Journal of Agricultural
Science 30(2): 262-275.
Hassan, Y., Ismail, M., Murray, W.
& Shahbaz, M.Q. 2020. Efficient estimation combining exponential and ln
functions under two phase sampling. AIMS
Mathematics 5(6):
7605-7623.
Hidiroglou, M.A. 2001. Double
sampling. Survey Methodology 27(2): 143-154.
Jabeen, R., Sanaullah, A. &
Hanif, M. 2015. Efficient class of exponential estimators for population mean
in two-stage cluster sampling. Pak. J.
Statist. 31(6): 683-696.
Kalita, D., Singh, B.K. &
Choudhury, S. 2013. Improved exponential chain ratio and product-type
estimators for finite population mean in double sampling. International Journal of Statistical Sciences 13: 21-37.
Khan, H., Gupta, S. & Farhat, H.
2020. A ratio-cum-regression estimator of population mean in unequal
probability sampling design. Communications
in Statistics-Simulation and Computation 49(2): 484-490.
Khan, M., Shabbir, J., Hussain, Z.
& Al-Zahrani, B. 2014. A class of estimators for finite population mean in
double sampling under nonresponse using fractional raw moments. Journal of
Applied Mathematics 2014: Article ID. 282065.
Lu, J., Yan, Z. & Peng, X. 2014.
A new exponential ratio-type estimator with linear combination of two auxiliary
variables. PLoS ONE 9(12): e116124.
Neyman, J. 1938. Contribution to the
theory of sampling human populations. Journal
of the American Statistical Association 33(201): 101-116.
Noor-ul-Amin, M. & Hanif, M.
2012. Some exponential estimators in survey sampling. Pakistan Journal of Statistics 28(3): 367-374.
Rashid, R., ul Amin, M.N. &
Hanif, M. 2015. Exponential estimators for population mean using the
transformed auxiliary variables. Applied
Mathematics & Information Sciences 9(4): 2107-2112.
Robson, D.S. 1957. Applications of
multivariate polykays to the theory of unbiased ratio-type estimation. Journal of the American Statistical
Association 52(280):
511-522.
Sanaullah, A. 2012. Improved
exponential ratio-type estimators in survey sampling. Journal of Reliability and Statistical Studies 5(2): 119-132.
Sanaullah, A., Hanif, M. &
Asghar, A. 2016. Generalized exponential estimators for population variance
under two-phase sampling. International
Journal of Applied and Computational Mathematics 2(1): 75-84.
Sanaullah, A., Khan, H., Ali, H.A.
& Singh, R. 2012. Improved exponential ratio-type estimators in survey
sampling. Journal of Reliability and
Statistical Studies 5(2):
119-132.
Shabbir, J. & Gupta, S. 2017.
Estimation of finite population mean using two auxiliary variables in
stratified two-phase sampling. Communications
in Statistics-Simulation and Computation 46(2): 1238-1256.
Singh, B.K., Choudhury, S. &
Kalita, D. 2013. A class of exponential chain ratio-product type estimators
with two auxiliary variables under double sampling scheme. Electronic Journal of Applied Statistical Analysis 6(2): 166-174.
Singh, G. & Majhi, D. 2014. Some
chain-type exponential estimators of population mean in two-phase sampling. Statistics in Transition New Series 15(2): 221-230.
Singh, H., Tailor, R. & Tailor,
R. 2010. On ratio and product methods with certain known population parameters
of auxiliary variable in sample surveys. Sort 34(2): 157-180.
Singh, H.P. & Espejo, M.R. 2007.
Double sampling ratio-product estimator of a finite population mean in sample
surveys. Journal of Applied Statistics 34(1): 71-85.
Singh, H.P. & Vishwakarma, G.K.
2007. Modified exponential ratio and product estimators for finite population
mean in double sampling. Austrian Journal
of Statistics 36(3):
217-225.
Singh, R., Kumar, M. &
Smarandache, F. 2008. Almost unbiased estimator for estimating population mean
using known value of some population parameter(s). Pakistan Journal of Statistics and Operation Research 4(2): 63-76.
Singh, R.V.K. & Ahmed, A. 2015.
Improved exponential ratio and product type estimators for finite population
mean under double sampling scheme. International
Journal of Scientific and Engineering Research 6(4): 509-514.
Srivastava, S.K. 1971. A generalized
estimator for the mean of a finite population using multi-auxiliary
information. Journal of the American
Statistical Association 66(334):
404-407.
Srivenkataramana, T. 1980. A dual to
ratio estimator in sample surveys. Biometrika 67(1): 199-204.
Sukhatme, B.V. 1962. Some ratio-type
estimators in two-phase sampling. Journal
of the American Statistical Association 57(299): 628-632.
Tailor, R., Tailor, R., Parmar, R.
& Kumar, M. 2012. Dual to ratio-cum-product estimator using known
parameters of auxiliary variables. Journal
of Reliability and Statistical Studies 5(1): 65-71.
Vishwakarma, G.K. & Kumar, M.
2014. An improved class of chain ratio-product type estimators in two-phase
sampling using two auxiliary variables. Journal
of Probability and Statistics 2014:
939701.
Vishwakarma, G.K., Kumar, M. &
Gangele, R.K. 2014. A general class of chain ratio-product type exponential
estimators in double sampling using two auxiliary variates. The Philippine Statistician 63(2): 9-20.
Watson, D.J. 1937. The estimation of
leaf areas. Journal Agr. Sci. 27: 474.
Yadav, R., Upadhyaya, L.N., Singh,
H.P. & Chatterjee, S. 2013. A chain ratio exponential type estimator in
two-phase sampling using auxiliary information. Statistica 73(2):
221-234.
*Corresponding author; email:yasirhassan7924@gmail.com
|